
Reviews/inspections and pair programming

Richard Berntsson Svensson, Jimmie Johansson, Kashif Ahmed Khan
School of Engineering

 Blekinge Institute of Technology
dj20p@ny.com, jj76@spray.se,kakb04@student.bth.se

Abstract

When developing software there are lot of defects
brought into software products. Many of the defects are
discovered during the testing of the product. Still, many
unknown defects are present but invisible. To decrease
defects in the final product, defect prevention can be used
to reduce the defects by preventing them from getting into
the product in the first place. This report brings some
understanding of defect prevention and techniques that
can be used for preventing these defects. The conclusion
is that many defects can be prevented from slipping into
the code but also that reviews and inspections are not
easy to perform. They are huge processes with both
advantages and disadvantages. However, they might be
well worth the effort if benefits can be proven.

1. Introduction

This paper is a part of an assignment in the course
Quality Management given by Blekinge Institute of
Technology. The purpose with the assignment is to
present the concept of inspections and reviews and how
they can prevent defects in software development. As the
report is written with defect prevention in mind, the
concept of pair programming is also discussed.

Defect prevention is proven very effective. Two thirds
of the maintenance cost is reduced by defect prevention
and five to ten times reduced cost from testing the product
[4]. It is with these figures in mind we started to bring
some understanding in the review techniques.

The report has the following outline. In section 2, a
summary of inspections, walkthrough and pair
programming is made. In section 3 we describe the defects
that can be found prevented by these techniques. In
section 4, a discussion about acceptability of the
techniques is held. In section 5 we discuss advantages and
disadvantages and in section 6, the relation of these
techniques to ISO and CMMI. Finally, we conclude the
report in section 7.

2. Summary of techniques

The purpose with reviews is to evaluate the process
and the product to be able to find defects and deviations
as well as to make future improvements. Reviews are
divided into two categories, project reviews and product
reviews. This report will focus on product reviews
because these (the reviews that are presented in this
report) reviews can be used as defect prevention
techniques, see section 3 for more details. The two review
variants that are presented in this report are walkthroughs
and software inspections. Pair programming is also
presented in this report, because it can be used as a defect
prevention technique. In subsection 2.4, a comparison
between the presented review variants and other variants
are made as well as a comparison between all presented
techniques (walkthroughs, software inspections and pair
programming) in this report.

Figure 1 shows an overview of how the different
techniques are related.

Figure 1 Overview of the techniques [7]

2.1. Software Inspections

An inspection has the purpose of examining a software
product to check if the software product conforms to
specifications and standards. It also has the purpose to
collect data during the inspection for measuring the
quality of the software product. Inspections verify that
software corresponds to the specification and non-
functional requirements. Inspections also verify that the
software is inline with regulations, standards and

procedures. Detected defects is also used to make
improvements for future inspections by updating strategies
and checklists with new defects found that not have been
looked for earlier. Inspection can be seen as defect
detection and we agree upon that it is defect detection.
However, to be able to make defect prevention, one need
to find defects to be able to prevent them in the future.
During an inspection, ideas for how to solve identified
defects are given but no decision is taken of how the
defect will be solved. It is more an action of giving
suggestions of how to solve the found defects rather than
decide upon how the defects will be corrected. The
artifacts that can be a target for inspections are
requirements specifications, different design documents,
source code, test documentation, manuals for users and
installation manuals.

When inspections are performed there is a suggestion
of being three to six people [1]. Also, these people should
have different roles and responsibilities for the inspection.

2.1.1. The roles. The different roles in an inspection are
inspection leader, recorder, reader, author and inspector
[1]. The responsibility of an inspection leader is to make
all the administrative work before the inspection. This can
be actions like planning and making preparations. During
the inspection he is the one to make sure that the
inspection is performed as planned and meet the
inspection objectives. He is also responsible for collecting
the inspection data and to address the output from the
inspection. The output is more described in section 2.1.3.
The recorder manages all the recording during the
inspection. He documents all deviations that are
discovered during the inspection. He also documents all
action, decisions and recommendations. The recorder can
also be the same person that is the inspection leader. The
reader is the one to guide the inspection team through the
inspection. He will be prepared on the software product to
guide the team in a logical way through the product. He
will also know what important areas that is critical to
inspect. The author has the duty to make sure that the
planning for the inspection meets the software product in a
good way. He has to know more about the product to
support the planning work as he is the one to gather the
inspection material to the inspection leader so ha can plan
the inspection. During the inspection he makes sure that
all planned work is complete before the inspection is over.
The inspector has the task to identify deviations in the
software product from different specifications. It is good
to have different areas to inspect related to one single
inspector. This means that one inspector should
concentrate on certain defects while the other inspectors
concentrate on something else. In this way you can get a
good coverage of all areas.

2.1.2. The inspection. Before the inspection starts there
have been some planning work by the inspection leader.
First of all he has put together the inspection team and
divided the different responsibilities to the team members.
He has also spread the inspection material to all team
members so they can prepare for the inspection and also
to provide feedback on the material before the inspection.
Also, the author will present the overview for the
procedures for the inspection. Moreover, the inspection
leader also schedules the time for the meeting and the
place where the inspection will take place.

Except from the planning of the inspection, there are
some other preconditions before the inspection can start.
The first condition is that the objectives for the
inspections have been stated. The second condition is that
all the inputs for the inspection are available to be
inspected. These inputs are besides the already mentioned
objectives for the inspection; the software product,
documented procedures for the inspection, forms to report
on and existing known deviations. These inputs are the
minimum. Other preferable inputs can be checklists,
standards, guidelines and specifications. You can also use
hardware specifications and performance data for
computers that the system will run on. Beside these
preconditions for starting with the inspection, there are
some other issues to think of before starting with the
inspection. It is preferred that the software product that
will be inspected is complete or at least the parts that will
be inspected are complete. It is also good if there are
automated error detection tools available.

As said before, the inspection team members should
give feedback to the inspection leader on the inspection
material. To be able to give feedback on the inspection
material they all examine the software product before the
inspection takes place. All deviation from specifications
etc is documented and sent back to the inspection leader
that will document all findings. This is done to make the
time for the inspection as effective as possible. During the
inspection the team can focus on more hard found
deviations rather than the easy found before.

When the time has come for the inspection to take
place there is a suggested agenda to follow [1]. The
description of the inspection will follow this agenda. First
an introduction meeting is held. Here all the inspectors are
introduced to each other and the inspection leader informs
about the purpose with the inspection and reminds the
team participants to focus on deviation defects rather than
on analyzing the defects. Information that the reader
documents the finding is told and that the author can be
questioned for issues about the software product is stated.
The inspection leader also answers questions that the
inspectors have that are crucial for the inspection. The
inspection leader will also make sure that all inspectors
are well prepared for the inspection. Otherwise he should
schedule another time for the inspections just to make sure

that the inspection will give the best result as possible. If
the inspectors are well prepared, the common deviations
are presented for the inspectors to give them hints of what
to look for.

When this is done the inspection starts. During the
inspection the inspectors examine the software product
systematically and objectively. All findings are reported to
the recorder that documents the findings on the deviation
list created by the inspection leader. If there are any
difference in opinion the finding are noted and later
discussed in the end of the inspection meeting. At the end
of the inspection meeting, all findings are evaluated so
that they are accurate and complete documented. Also as
said before, in this stage all disagreed deviations are
discussed and resolved.

Before the inspection ends, the inspection team decides
upon whether or not the software product is approved. It
has to be decided on re-work should be done and verify
that the re-work will solve the deviations. Before the
inspection ends it also has to be a re-inspection schedule
to inspect all changed work in the software product. The
inspection leader also has to verify that all planned parts
in the inspection have been carried out. The inspection is
declared complete when all parts of the agenda for the
inspections are finished and the outcome of the inspection
is presented in a report. The outcome of an inspection is
described in the next section.

2.1.3. The outcome of the inspection. The outcome of an
inspection process is a document which should cover the
following parts [1]; a description of the inspected project,
all team members of the inspection and the time they put
into the inspection. Also, it should contain a description of
the product inspected and the size of the inspected
material together with all the inputs for the inspection.
Moreover, all objectives for the inspection should be
documented in this outcome list together with all found
defects described with location, classification and a
description of the defect. There should also be a summary
of the number of defects found and a dividing into the
different defect categories. How the inspection was
performed should also be stated as well as the effort spent
on preparations. All re-work that will be made should also
be stated in this document. Additional outcome of an
inspection is data colleted for analysis. This data is used
for measuring the quality of the product, measure the
effectiveness of development together with maintenance
and also effectiveness for the inspection. These measures
are collected for the purpose of improvements. All data
collected are categorized. A few of these categories are
the following; ambiguous, inconsistent, missing, not
conforms to standard, not able to implement and risk-
prone. Besides dividing all the collected data into these
categories, the data is also prioritized into levels. These
are major and minor. When the collected data is analyzed,

all findings that are frequently occurring as defects should
be added to the checklist used during inspections. Also,
the data related to inspections should be analyzed to be
able to make improvements for future inspections.

2.2. The walkthrough

The walkthrough is often related to code examinations,
but a walkthrough can also be used to control interface
specifications, detailed designs, change control
procedures and test specifications or procedures [2].
Software requirements specification, software user
documentation, maintenance manual and system build
procedures can also be controlled by a walkthrough [1]. A
walkthrough could be used to exam a specific product if
the technology is complex or new, if there is a big volume
of materials that should be reviewed and a walkthrough
could also be used when cost and risk for a product is
reviewed [2]. But, if the software is a critical system,
walkthrough should not be used as the only review
technique.

The purpose with a walkthrough could be to educate
personnel about a software product or a new technology
as well as to train the participants. It could also be to
appraise a software product, to make sure that a product
follows the agreed specifications and that the product
follows applicable standards. Other important purposes
with a walkthrough are to find anomalies and to improve
the software product. A walkthrough can be seen as a
defect detection technique and we agree upon that it is.
However, to be able to do defect prevention, the defects
needs to be found to be able to prevent them in the future.
A walkthrough could be used to educate and train
personnel about a product or a new technology, which can
lead to prevented defects in future products. The data that
is collected during a walkthrough should be constant
analyzed to improve the walkthrough review and to
improve the software activity or process that is used to
produce a software product. This can also lead to
prevented defects for future products that will use the
same activity.

When walkthroughs are performed there is a
suggestion of being two to seven people [1]. These people
should have different roles and responsibilities.

2.2.1. The roles. There are different roles that are needed
for walkthroughs. These roles are walkthrough leader,
recorder, team member and author [1]. Since a
walkthrough can be performed with only two people, one
person can have more then one role. For example, the
walkthrough leader can also be the recorder or the author.

The walkthrough leader has the responsibilities handle
administrative tasks, like distribute documents and plan
the meeting. The walkthrough leader has the

responsibility to make sure that the walkthrough is
performed in a right way and to prepare the objective
statements for the team. The walkthrough leader also has
the responsibility to make sure that the right outcomes are
produced. These outcomes are described in more detail in
section 2.2.3.

The recorder has the responsibility to document all
decisions and actions that is discussed during the
walkthrough meeting. The recorder should also document
comments about found anomalies, contradictions,
improvements for the activity or other approaches for
solutions during the walkthrough.

The author’s responsibility is to present the software
product during the walkthrough.

Team members have the responsibilities to review
input materials to the walkthrough, participate during the
walkthrough and to make sure that the walkthrough meets
the walkthroughs objectives.

2.2.2. The walkthrough procedure. Before the
walkthrough can start, two preconditions must be fulfilled.
The first condition is that the statements of the objectives
should be defined and the second condition is that all
required inputs like the software product and statements of
objectives are available. There are four phases in the
walkthrough procedure [2]. These phases are planning,
overview, preparation and examination.
It is the walkthrough leader that is responsible for
planning the walkthrough. To do this, the walkthrough
leader should identify a team, schedule and decide upon a
place for the meeting and to distribute needed input
materials to all team members. In the overview phase, the
author should present an overview picture of the product
during the walkthrough meeting. In the preparation phase,
all input materials should be reviewed. All found
anomalies during the review should be sent to the
walkthrough leader before the meeting to make the
meeting more effective. In the examination phase, the
meeting starts with an introduction to this meeting, the
purpose of the meeting, that the members should focus on
detection and not comment the author, only the software
product. After the introduction, the author gives the
overview presentation and then walks through the
software products elements. During this walkthrough,
team members ask questions and rises issues about each
element of the product as well as taking notes. After the
walkthrough, the leader leads the discussion to decide
upon alternative solutions or actions. The recorder takes
not from the discussion. The walkthrough team should
also decide if there is a need for a follow-up walkthrough.
The meeting is completed when all product elements has
been discussed. After the meeting, the walkthrough leader
should issue the report with the right output; see section
2.2.3 for more details.

2.2.3. The outcome of the walkthrough. The outcome
from a walkthrough is documented evidence that should
include the following parts [1]; all team members from the
walkthrough and the examined software product. Also, it
should include the objectives statements that were
supposed to be achieved during the walkthrough together
with information if they were achieved or not. There
should also be two lists, one that contains
recommendations for each anomaly and a second that
contains actions. Each action should have information
about due dates and a responsible person. There should
also be information about any needs for a follow-up
walkthrough.

2.3. Pair programming

Pair programming has been nominated and

acknowledged many times in the past as an improved way
of developing quality software [9]. Pair programming is a
practice or a custom in which two programmers sit side by
side on a single work station or a computer. This team of
two programmers continuously collaborates and works
together on the same design, code, algorithm and test [8].
One of the team members/programmer can be referred as
the ‘driver’. This has the control of the keyboard/mouse
and is involved in the active implementation of the
program and the code. The other programmer known as
the ‘observer’ is involved in continuous active observation
of the work of the driver. The observer looks for the
syntactical and spelling mistakes and is also involved in
the direction of the part of project for future. He is also
involved in looking up the resources, considers strategic
implications of the work and asks questions to be
answered. Both the observer and the driver can and mostly
switch roles and work together and have equal share in the
development of the program they work on. They also are
involved in effective communication and can work on
challenging problems and can brain storm them.

2.4. Comparison of techniques

In this section we will compare different techniques.
First, there will be a comparison between the techniques
described in this report. We will compare software
inspections, walkthroughs and pair programming and
describe the differences between them. Moreover we will
make some comparison between the different variants of
review techniques. We will describe the differences
between our described techniques, software inspections
and walkthroughs against the other variants like
management reviews and technical reviews. Here we do
not focus on pair programming as we do not see that
technique as a review or inspection. However, when doing
the comparison we think of walkthrough and inspections

as one single unit in comparison to the other variants of
techniques.

2.4.1. Between the described techniques. The
walkthrough and the software inspection review
techniques have a lot in common. For example, both are in
the product review group, both techniques collects data
during the walkthrough and the inspection and that no
management people should participate during the
walkthrough or the inspection. Other similarities are that
both techniques are defect detection techniques and both
can be used for defect prevention in future projects and
future development of products.

Even though there are many similarities, there exist
some differences between the walkthrough and the
software inspection [1] [2]. A software inspection
performs a more thoroughly evaluation of some parts of a
software product, while a walkthrough evaluate the whole
product. One of the walkthrough objectives is to consider
alternatives for a specific solution or functionality and so
forth. In software inspections, alternatives should be
ignored. A walkthrough can be used to examine new or
complex technologies because there is no need for
expertise people in a walkthrough. One purpose to use a
walkthrough for new and complex technologies is that the
personnel can be educated after the walkthrough. This is
one of the objectives in the walkthrough. A software
inspection is not suitable for this task because a software
inspection needs a team with right expertise knowledge as
well as trained staff. Another difference is that software
inspections uses checklist during the inspection, while
there is no use of checklists in a walkthrough. If data
needs to be collected, even though both techniques collect
data is software inspections to prefer, because a software
inspection can have more expertise personnel with expert
knowledge about the product and performs a more
thoroughly evaluation.

Pair programming is not like walkthroughs or software
inspections, because pair programming is a defect
prevention method while walkthroughs and software
inspections are more defect detection. But the result from
these two methods can be used to prevent defects to enter
the system later in the project and in future projects.
However, both software inspections and pair
programming works on a single problem thoroughly and
comprehensively evaluates the part of the problem.

However unlike software inspections the alternatives
are not ignored and all possible solutions to problems are
well thought, discussed and analyzed and then the best
possible choice is implemented and used. Another
difference between software inspections and pair
programming is that the members of the pair need not to
be highly skilled people. The teams could be a mix of one
experienced person and one junior or fresh person.

2.4.2. Between different variants of reviews. The
different variants of the techniques that we compare
software inspection and walkthroughs are management
reviews and technical reviews. These two last mentioned
techniques are very similar to each other but what
separates them are that management review aims for
evaluate a project to clarify its status and progress [1].
The aim of technical reviews is more for the purpose of
evaluate the products status and conformance to
specifications [1].

To start with comparison between our mentioned
techniques against management review, we can say that
management reviews cover more material to examine. The
purpose with management reviews as said are to evaluate
the project while our techniques have the purpose of find
defects and deviations from specifications. Also, our
techniques can be used for preventing actions for bringing
faults into the product while management reviews just
examine the current status of a project. Our techniques can
be used for defect prevention but management review just
detects problems. During a management review,
management people are involved in the work in
comparison to our techniques where more technical
people perform the reviews. Also, management reviews
uses more management documentation for evaluation
while our techniques study more technical documents.

To compare our techniques against technical reviews
we can say that also in this comparison, more material are
examined in a technical review. Technical reviews does
not concern ay data collection or improvement work as
our techniques but just aims to examine the status of the
product and the conformance to specifications. Technical
reviews also just detect faults. We think that another
difference can be that our techniques can be used earlier
in a project to check requirements specifications and
design documents while technical and management
reviews are performed a little later in the project.

3. Prevented defects with this technique

In this section we will describe different defects that
can be discovered with these techniques and also how
these found defects can be prevented. We will also present
metrics for how these preventions can be measured in
terms of beneficial for the prevention. Last in this section
we will also present three defects from past projects that
we have been part of and how they where prevented both
from coming into the code and how they were prevented
in future projects.

3.1. Walkthrough

When performing walkthroughs, there are different
defects that can be found from source code,

documentations and some procedures. But, we think that
walkthroughs are most suitable for requirements and
design walkthroughs because there is no or almost none
preparation. To walk through requirements and to walk
through the design description, not much preparation is
needed. But, to check the source code a good
understanding and knowledge about the product is
needed. Of course can the source code be walked through,
but we think that software inspections are better to check
the source code because it performs a deeper inspection,
see section 3.2.

In the requirements specification, a walkthrough should
look for defects like omissions, unwanted additions and
contradictions [2] between requirements. But, this is not
all; a walkthrough should also suggest and consider other
suitable functionalities and performance objectives [2].
This is done to see if there are better solutions that will
prevent defects from coming in to the sharp requirements
specification and the implementation.

In the design description, a walkthrough should look
for defects like problems with the current design, missing
functionality and problems or bad design solutions. But,
even here a walkthrough should consider and suggest
other suitable design solutions.

Besides from these defects, a walkthrough can be used
to check a product technology that is new or complex. The
reason for using walkthroughs is that it could be hard to
find a good review team with the right expertise [2]. The
purpose to have a walkthrough of new technologies or
complex technologies could be to educate the rest of the
team members after the walkthrough. If the team members
get more knowledge about the technology, defects can be
prevented to come into the implementation.

Walkthroughs can use the same metrics as software
inspections and collect the same metrics as well, see
section 3.2 for more detail information. Walkthroughs can
use and collect metrics, but it is recommended to use
software inspections when metrics should be collected [2]
since software inspections are more thorough.

3.2. Software Inspections

When performing inspections, the different defects that
you can find are defects from documents and source code.
Except from spelling errors and deviations of standards,
there are many other defects to look for. Defects from the
requirements specification are most likely to be defects
like, conflicts between requirements and bad stated
requirements. As there are no other documents that can
verify requirements specification, it is hard to find that
many variants of defects here.

Defects from design documents that can be found are
missing functionality that can be traced from the
requirements specification. You can also look for design

solutions that might be problematic once implemented. It
is good to check for nice dividing of the system with
interfaces between the parts. Inspection of design
documents should focus on finding solutions that might be
casual so that design keeps as simple as possible.

Test documentation is another document well worth to
inspect. Here you can examine that all functionality is
tested in the system. It is the matter of making sure that all
requirements are covered in the testing phase.

During code inspection there are a lot of defects to
look for. First of all, checking that the code standard is
followed is quite easy but maybe trivial. Other defects that
can be found during code inspection can be divided into
categories. These categories are described further. The
first category is data faults and here do all faults like
instantiation of variables before use belong. Also, making
sure all variables are used. Then we have control faults.
These are faults that derive from loop non-termination,
not all cases are considered in statements. Input and
output faults are another category of faults. These are
faults originated from unexpected inputs to a function.
Also that outputs from a function might not have been
assigned. Then we also have interface faults. Parameters
for a function might have been stated in wrong order or
there is not correct number of parameter for a function.
Storage faults are another category where memory
allocation is considered and last we have exception faults
which mean that all error exceptions might not have been
taken care of.

Faults found during code inspection might not be seen
as defect prevention. In the current project it is not but
when these faults are collected you can analyse which the
most common errors are brought into the code and then
try to found their origin, i.e. why they were brought into
the code. If you can discover this source then you can be
used to change procedures to prevent the faults from
appearing that often in the code in the future.

Software inspections can be used to collect metrics
from documents (requirements specifications, quality
manuals, design documents, test documents and so forth)
and source code. Metrics that can be collected in
documents are spelling mistakes, grammar mistakes, and
conflicts between requirements, procedures, design
solutions and so forth. Moreover, can duplications,
ambiguous requirements, test cases and so forth and
contradictions in the documents can be collected. In the
source code can the following metrics be collected,
deviations from code standard, minor coding errors
divided into different categories and bad structured code
that are hard to read/understand.

3.3. Pair programming

As described earlier pair programming is more or less

like software inspections. Pair programming involves

continuous reviews of design and code that leads to most
effective defect removal rates. Also with pair
programming deviation from standards and the syntax and
semantic errors are more likely to be found and removed.
This saves a lot of time on part of recompiling the code
and looking for missed commas, function missing braces
and non-initialized variables etc. These sorts of defects
are more likely to be found using pair programming
because it involves one person continuously looking over
the monitor for the code that is being written. Also
previously described the different categories of defects
that can be checked using software inspections can not
only be detected but also prevented using the pair
programming. Therefore pair programming can server as
a defect prevention technique in those cases making those
defects not appearing in the code in the first place.

Also with pair programming defects in the design can
be thoroughly reviewed, inspected and analyzed. With
pair programming a simpler and a superior hybrid design
is produced because of the arguing of the team members
within the pair.

In addition to that with pair programming test cases are
produced initially and refactoring is done while the code
is being written. This ensures that the design would be
simple and the code would be manageable and precise
thereby leading to fewer errors in the design and test
phases.

3.4. Three defects from a past project

The first defect comes from using the JSP/Servlet
programming language. The problems were that it took a
very long time to search for defects in the source code, it
took time to redo the work and to test the new code. Other
problems were that after the delivery there was still errors
in the interface like wrong language, spelling mistakes and
graphical faults. In a large project where the same two
authors of this report participated in, JSP/Servlet was one
of the programming languages. The difference was that in
the large project was pair programming used. This
prevented many defects to enter the system. There were
fewer compiler errors (the feedback was bad even here),
which lead to less time spent on searching in the source
code for errors, reworking and testing the system again.
Another important aspect was that there was no spelling
mistakes, wrong language or any problem with the
graphical part after the delivery. This saved a lot of time
because no time to rework or producing a new deliverable
product was needed.

The second defect is an example where a technique
was used to prevent defects to enter the system. The
defect was a design error and was removed by performing
a walkthrough. In the design of the software product there
was a big error that would have removed the possibility to

run the simulator with multiple simulation engines that
should act like a central for sending messages via mobile
phones. The project group spend one day to go through
(like a walkthrough) the design of the system and found
this design error. This prevented a lot of defects to enter
the system. Since it took three to four weeks to build the
right simulator, we think that this preventive action saved
at least three to four weeks.

The third and last defect was not prevented, but it
could have been prevented and saved a lot of time for the
project members. When the simulator was completed (one
part of the whole project) and should be tested against the
customers simulator, there was a lot of errors that
occurred. The messages signals and data from our
simulator could not be interpreted by their simulator and
our simulator could not interpret their signals and data.
The customer thought that we had a problem in our
simulator. After two weeks of testing and a lot of
reworking where many defects came into the system, it
turned out that the problem was on their simulator. Their
simulator did not follow the different standards from the
operators of sending messages from mobile phones. If the
customer had at least spent one day to inspect their
simulator to see if it follows the standard, we could have
saved two weeks of testing and the time it took to restore
the simulator.

4. Acceptability of the techniques

In this section we will discuss how the techniques can
be motivated to perform. We will present different
motivations for different kinds of stakeholders in the
organization. There is a need to use different kinds of
motivation for upper management than it is for
developers. Also, in this section, resistance to the
techniques is described and how the resistance can be met
and managed.

4.1. Software Inspections and Walkthrough

When performing software inspections and
walkthroughs there might be some resistance of the work
as developers might see the work as you check so that
they have not made any mistakes. Also to make it possible
to perform reviews it requires that management and
developers are made aware of the benefits they can earn
from the reviews. Motivation and resistance of reviews are
more described in the next two sections.

4.1.1. Motivations. As a major motivation for performing
inspections and walkthroughs, defect detection and defect
prevention can be used. Defects detection early in the
development process prevents faults from going into the

source code. The more faults that can be prevented from
going into the source code the less faults will end up in the
product that goes to the customer. We think that testers
will find about the same amount of faults when testing the
system. Of course, performing inspections and
walkthroughs are expensive as you dedicate a group of
people that does not develop something for about a day.
Expenses should be kept for oneself [4]. However, what
this group can detect early saves time and money in the
end as in the future, processes might have been improved
to prevent common found faults or developers have learnt
how to prevent these faults. Inspections and walkthroughs
makes people in an organization think more in terms of
quality, especially if they can see the benefits from
performing these quality checks.

When performing the inspections and walkthroughs, it
is important to collect data that can be analyzed and serve
as feedback to the people in the organization. When they
see the benefits they will be more cooperative [4].
Inspections can also be used for the purpose of verify and
validate documentation. This is an important aspect to
actually verify that you develop the correct system and
also to check so that the system is correct implemented.
Also, when performing these reviews of a software
product, people in the evaluation team get more
knowledge of how the product works and are built. New
people brought into an organization or people new to a
project or product can be a part of the reviews to learn
about the product.

4.1.2. Resistance. Resistance in an organization against
reviews, we think is very common. Developers do not like
that someone else checks that they have done a good job.
They might think that reviews are to be done for the
purpose of finding those people that are less good in
programming and bring in more faults to the system. Also,
they can feel that it steals time from them if they are
forced to participate in the work. Also, not all people are
fond of doing this kind of work and really think it is
boring. They may also know that these reviews can lead to
improved processes in the future which may force changes
of their way of working. People often do not like changes.

How to overcome this resistance is to make the
developers understand that these reviews are not for
making corrective actions for their bad work. It serves the
purpose of measure the quality in the product and in the
process together with earning knowledge of how to
prevent defects in the future. It is important to provide
feedback both to developers and to management to prove
that all reviews are beneficial, that the whole way of
working has been improved and that the quality of the
product has been improved. This should make it more
enjoyable to work in an organization that develops quality
products.

4.2. Pair programming

Pair programming is now being widely used in the

industry as well as academia and many experiments have
been performed to check its effectiveness. Like every
other technique it faces resistance on part of the people
involved in using it and has been discussed in the next two
sub-sections.

4.2.1. Motivations. Like software inspections and
reviews, the major motivation behind pair programming is
defect detection and prevention. With pair programming
fewer defects are introduced in the design and code. In
addition to that people working in pairs find the
experience more enjoyable than working alone. This also
enhances the satisfaction of the programmers as they
produce better solutions and work more effectively and
efficiently. Also with pair programming there is effective
communication involved within the pair members [10].
This helps in producing better and faster solutions to
difficult problems and improves the over quality of the
system. Also with pair programming there is learning
going on at all stages as both the persons teach each other
and learn from each other thereby increasing their
problem solving skills. These are some of the factors that
can be used to motivate the developers, managers and
organizations to use pair programming.

4.2.2. Resistance. As people do not like change, there is
also a resistance of using pair programming within the
organizations. One of the major resistance factors within
the organizations and the managers is the economic factor.
The affordability of pair programming is one of the key
issues which the managers need to deal with. If it would
be too costly then the managers would feel reluctant to use
it. There is an assumption that the introduction of pair
programming increases the development costs and
manpower overheads. The author agrees with the
assumption but one thing should be kept into
consideration that pair programming reduces the number
of defects that are being introduced in the beginning. This
helps in minimizing the cost of redoing the work and
detecting problems at the later stages of the development
and testing. The empirical evidence shows that removing
and fixing defects at later stages are much more expensive
[11], [12].

5. Strengthens and weaknesses

In this we will present some different strengths and
weaknesses for software inspections, walkthrough and
pair programming. There are many advantages and
disadvantages for all the techniques and should be

carefully analyzed when the different technique are most
appropriate to use.

5.1. Walkthrough

There are both advantages and disadvantages with
walkthroughs. We will start to present some advantages
with the walkthrough. The major advantage with the
walkthrough is that it can be used to go through a lot of
material rather fast [3]. This means that a whole product
or a requirements specification can be reviewed rather
fast. By reviewing the requirements specifications and to
suggest alternative functionality if something does not
work, walkthroughs can prevent defects to come in to the
implementation.

Another advantage with walkthrough is that there is
almost no need for preparation [3]. There are some
participants that need to prepare a little, but not everybody
and not like in software inspections (see section 5.2 for
more details). Since there is almost none preparation,
walkthroughs are suitable to use when the technology is
new or complex [2]. The new technology can be walked
through and the participants can then educate the rest of
the team members. This is also a way to prevent defects to
come into the implementation phase. Another advantage is
that a lot of people can understand the information since it
is not that deep and detailed [3].

One disadvantage with the walkthrough is that the
people working or at least are tightly coupled with the
product could be bored during the walkthrough.
Completely new people to the product may not catch up
with the rest of the people. In both cases, chances of
stating interesting problems and suggestions can be
missed out. Since no advanced preparation is needed, the
participants have different understandings and different
knowledge about the product [3]. This can lead to
discussion where the participants do not understand each
other and problems might not be found. The participants
with the best knowledge and understanding of the product
are probably people that are working with the product or
close to the product. These people might be blinded by the
defects in the product since they see it every day and can
not come up with better suggestions. If then the rest of the
participants do not have a good understanding and
knowledge about the product, they might not be able to
see the problems or the bad solutions.

Another disadvantage with walkthroughs is the
collected data. Since the walkthrough do not look deep
into the product, the data might not be complete and
therefore should not walkthroughs be used when metrics
should be collected [2]. Software inspections are more
suitable for this task.

5.2. Software Inspections

Inspections have both advantages and disadvantages as
anything else. We will start with discuss the advantages
before we move on to the disadvantages. The major
advantage with inspections is that it finds defects on the
deep. Especially with known software products that is not
so complex. For new technical software product that is
complex it is more suitable for doing reviews [2]. This is
more discussed in section 2.4.1. As we see it inspections
are very good for checking the source code. Many faults
can be found here. These faults can be collected for the
purpose of educate so that they are prevented for going
into the system in the future. Inspections of documents
provide a good prevention of bringing faults into the
implementation as many faults are removed in an early
stage of development.

Inspections of documents that prevent errors from
going into the implementation of the software product
give advantages like more efficient testing as many faults
are already removed earlier which makes testing more
focused on the remaining faults in the system. If fewer
faults are in the system when testing, the test team deals
with those faults and less faults are in the product when
delivered to the customer. When performing inspections,
the software product does not need to be implemented and
the found faults are prevented from getting into the code.
Another advantage is that inspections find the fault and
the location of the fault in comparison with testing that
only finds the fault. This makes an inspection more
efficient as time can be saved. When inspections are
focused on both documents and source code, there is a
possibility to faults that have been covered by other faults
when testing the software product. When testing, one error
can be discovered which are caused by two faults. It is a
risk that just one of the faults is found when doing
correction which leads to more time spent on testing.
When doing inspections you can find these two faults
before they go into the system. Also, when inspections are
performed it uses old known defects as input so the team
has some clue of what to look for. Moreover, a checklist is
used during the inspection with previous known defects
which makes it easier perform the inspection as you can
follow the checklist. This checklist is updated for each
inspection which makes common defects visible in this
checklist. Also, the team that performs the inspection has
made previous inspections and has some clue of which
defects to look for and where to look for them. They are
aware of earlier mistakes. All inspectors can also divide
certain defects among them so that all previously common
defects. This makes the inspectors not look for the same
defects which makes the inspection more effective and
also more complete.

The disadvantages with inspections are that the
checklist might be used too intensively and inspection
might just focus on the most common defects rather than
also find other defects. Developers also might feel that
they are criticized by having inspections for checking their
work. Also they can feel that inspections are looking for
the one that brought in the defect into the document or
source code. This can lead to resistance against the
inspection work and can also lead to that no one likes
performing inspections. Inspections can be seen as not so
exciting work from the reason of resistance to the work
and this can lead to non-effective inspections. Inspections
can be hard to motivate as they are expensive to perform
in the beginning before they are proven beneficial.
Moreover, inspections remove defects that never will be
visible which makes it hard to prove that inspections are
important. Inspections need much preparation before it
can be performed. Organizational standards need to be
learned and code standards. This makes an inspection
more expensive because of the preparations. Also, when
performing the inspection it is hard to check that the
software product conforms to the customers and users
need. It is only possible to check against requirements
specifications. Then there is also a problem to check non-
functional requirements. Non-functional requirements we
think need to be tested to actually prove that they meet the
requirements.

5.3. Pair programming

Like every other technique pair programming has its

advantages and disadvantages. In this section first the
advantages has been discussed followed by the
disadvantages.

One of the biggest advantages of pair programming as
mentioned earlier is the introduction of fewer bugs in the
initial stages of development. This helps in minimizing
the redo cost. It also helps the testers to stay more
focused towards bigger and major problems that need to
be tested within the system.

Another advantage of pair programming is
collaborative work and ego-less programming along with
comprehensive communication. Every one owns the work
equally and works equally to produce better, effective and
efficient solutions to the difficult of problems.

Another major advantage of the pair programming is
the communication over-head between the team members.
Two people can easily communicate as they are closely
coupled with each other within a single boundary and
space. This helps in producing better solutions and
decreasing defects and helps in defect removal and
prevention.

The disadvantage of pair programming is that people
might not like to work in teams of two. Also the

effectiveness of pair programming is dependent on the
effectiveness of team members. If one of the team
members is not reliable pair programming can produce
worst results than individual programmer. It also
introduces resistance on part of the programmers and the
management as it is considered to be an overhead for the
organization to deploy two people to carry out a single
task.

Another disadvantage of pair programming is that there
is not enough conclusive empirical evidence of its
effectiveness in the industry although some evidence in
academia is present [13].

6. Relations to ISO and CMMI

This section discusses the different techniques and the
relation to the quality thinking standard TickIT and the
model CMMI. We choose TickIT from the ISO standard
as TickIT is more directed towards software engineering.
We will present what TickIT and CMMI advice about the
different techniques, software inspection, walkthrough and
pair programming.

6.1. Software Inspection and walkthrough

The capability maturity model integrated [5] has some

goal that are inline with the described review techniques.
On the second level of capability maturity model
integrated, it is recommended that activities for
controlling and monitor projects and products are carried
out. Also, on the same level, you should perform reviews
on process and product. On the third level it is suggested
that verification on the work is performed. These
suggestions are inline with our techniques in terms of
defect detection. On level three, you should also collect
measures for improvement purposes but, it is not before
entering the fourth and fifth level of the capability
maturity model integrated, that you run into defect
prevention and improvement on processes. As we see it,
improvements and defect prevention is nothing you do in
the early stage of the capability maturity model integrated.
For the lower levels it is just detection that is the aim for
reviews. However, detection is good as it removes faults
early in the process. Still, just because that capability
maturity model integrated mention prevention on the
upper levels does not necessarily mean that it is forbidden
to do it even on lower levels. Prevention can always be
made even if it is just small actions. It does not have to
concerns large changes in an organization but may
concern changes of tools or some other small actions.

The TickIT standard has some parts that are inline with
the described techniques in this report. TickIT standard
has design and development review as one of their
demands. This means that the design and development

should be evaluated and that problems should be
identified together with suggested actions. The results
should also be recorded. This demand is inline with our
technique in terms of defect detection and as well as the
list of suggested actions in walkthrough. Both
walkthroughs and software inspections keep records of
identified defects and actions. Another demand from
TickIT is to have corrective actions. An example of a
source that should have corrective actions (which means
to eliminate the defects actual cause) is product defects.
This demand is inline with our techniques in terms of
defect detection.

7. Conclusion

To conclude this report we say that inspections and
walkthroughs are for defect detection. However, to be
able to prevent defects in the future you have to detect
defects in the past to actually know what to prevent. It is
the most common defects found by doing inspections and
walkthroughs that is the base for future preventions.
Moreover, as inspections in early phases of development
finds errors that are prevented from coming into the code
this can be seen as defect prevention.

Walkthroughs are good to use when systems are
complex and when the technology working with is new.
Also, walkthroughs are good for go through large amount
of material while inspections are more thorough and there
are a need of dividing inspections for inspect smaller parts
of a system or development. Also, inspections are better
for collecting data as it has a more thorough focus.

These techniques are not that strait forward. Resistance
to these techniques within an organization is not that
uncommon. Developers may think that the purpose of
these techniques is to check their work. However, it is
important to give feedback on the purpose and also the
result from the inspection.

The strengths with these techniques are that
walkthrough needs less preparation to perform.
Furthermore, no one needs to be an expert in the area. The
strengths with inspections are that the source of a fault is
found instead of finding the error while testing and then
have to search for the source. The weaknesses are for
walkthroughs that, different people can have different
levels of knowledge which might lead to that certain
people are bored during a walkthrough. People might have
difficulties to understand while some think that certain
things are trivial. For inspections there is a problem of
people that do not see the meaning as faults are removed
before they turn up as an error in the code.

8. References

[1] IEEE Standard for Software Reviews, retrieved on
the 6 December from
http://ieeexplore.ieee.org.miman.bib.bth.se/iel4/5362/1
4498/00666254.pdf

[2] Hollocker, C.P, Software Reviews and Audits
Handbook, John Wiley & Sons, United States of
America, 1990.

[3] Freedman, D.P, Weinberg, G.M, Handbook of
Walkthroughs, Inspections and Technical Reviews:
Evaluating programs, projects and products, Dorset
House Publishing, New York, 1990.

[4] Gilb, T, Graham, D, Software Inspection,
Addison-Wesley, UK, 1993.

[5] CMMI for software engineering, retrieved on the 6
December from
http://www.sei.cmu.edu/publications/documents/02.rep
orts/02tr028.html

[6] Executive overview of TickIT, retrieved on the 6
December 2004 from
http://www.tickit.org/overview.pdf.

[7] IEEE standard for software reviews and audits,
retrieved on the 6 December from
http://ieeexplore.ieee.org/iel1/2366/1231/00029123.pd
f

[8] Pair-programming, retrieved on 15 December from
http://www.pairprogramming.com

[9] Beck K., Extreme Programming Explained:
embrace Change, Addison-Wesley, Reading,
Massachusetts, 2000.

[10] L. A. Williams and R. R. Kessler, “All I Ever
Needed to Know About Pair Programming I Learned
in Kindergarten,” in Communications of the ACM, vol.
43, no. 5, 2000.

[11] Capers J., Software Quality, Addison-Wesley,
1996.

[12] Humphrey W.S., Introduction to the Personal
Software Process, Addison-Wesley, Reading,
Massachusetts, 1997.

[13] In Support of Student Pair-Programming,
retrieved 15 December from
http://www.pairprogramming.com/WilliamsUpchurch.
pdf

